
XGC with Kokkos/Cabana: Plasma Physics on Summit and Beyond

A. Scheinberg1,4, S. Ethier1, G. Chen2, S. Slattery3, R. 
Bird2, E. D’Azevedo3, S.-H. Ku1, CS Chang1

In collaboration with ECP-CoPA

P3HPC 2020, Sept. 2

1Princeton Plasma Physics Laboratory
2Las Alamos National Laboratory
3Oak Ridge National Laboratory
4Jubilee Development



2 Exascale Computing Project

WDMApp Requires Exascale Computers and Beyond

Gigaflops
5-D electrostatic ion 
physics in simplified 
circular cylindrical 
geometry

Teraflops
Core: 5D ion-scale 
electromagnetic physics 
in torus 

Edge: ion+neutral 
electrostatic physics in 
torus

Petaflops
Core: 5D ion scale 
Maxwellian ion + 
electron 
electromagnetic

Edge: non-
Maxwellian plasma,
electrostatic physics

Exaflops
Core-edge coupled 5D 
electromagnetic study of 
whole-device ITER, 
including ion-scale 
turbulence + local electron-
scale turbulence, profile 
evolution, large-scale 
instability, plasma-material 
interaction, rf heating, and 
energetic particles

Beyond
A WDMApp that 
includes necessary 
engineering reactor 
components, and 
applicable to leading 
alternate concepts 
(including 
stellarators); and 
possibly
6D whole device 
modeling



3 Exascale Computing Project

XGC outline
• Gyrokinetic (i.e. 5D) particle-in-cell code on an unstructured grid

Field solve

Electron push
(x60)

Ion push

Charge 
scatter

Transfer 
particle data 

between 
compute 
nodes

Collisions
Sources

Diagnostics



4 Exascale Computing Project

XGC outline
• Gyrokinetic (i.e. 5D) particle-in-cell code on an unstructured grid

Field solve

Electron push
(x60)

Ion push

Charge 
scatter

Transfer 
particle data 

between 
compute 
nodes

Collisions
Sources

Diagnostics

Electron
push

Electron
push

R
K 

St
ep

 1
R

K 
St

ep
 2

Collisions



5 Exascale Computing Project

Why adopt Cabana and Kokkos?
• Portability!

• Let Kokkos and Cabana handle data management and kernel execution for 
easy portability between architectures

• Reduce compiler dependencies (e.g. only PGI on Summit)

• Provide an easy/flexible framework for porting more kernels to GPU 

• Avoid code duplication
– 3 previous versions: original, vectorized, Cuda

PGI IBMGNU

Cuda FortranOpenACC



6 Exascale Computing Project

Why adopt Cabana and Kokkos?
• Portability!

• Let Kokkos and Cabana handle data management and kernel execution for 
easy portability between architectures

• Reduce compiler dependencies (e.g. only PGI on Summit)

• Provide an easy/flexible framework for porting more kernels to GPU 

• Avoid code duplication
– 3 previous versions: original, vectorized, Cuda, Cabana?

PGI IBMGNU

Cuda FortranOpenACC

4?



7 Exascale Computing Project

Old implementation of XGC

Old setup:

• All Fortran/Cuda Fortran

How does a Fortran code adopt a 
C++ programming model?

Main program
Setup

Main Loop

Deposition

Field solve

Push (Cuda)

Collisions (OpenACC) 

C++

FortranKEY:



8 Exascale Computing Project

A Kokkos implementation of XGC

New setup:

• Keep Fortran main and kernels

• C++ interface
– “Light touch:” Localized modification
– Gradual implementation

• Unified, optimized code base

Main program

Main Loop
Field solve

Collisions (OpenACC) 

Setup
Setup

Kokkos interface
Deposition (Kokkos)

Kokkos interface
Push (Kokkos)

C++

FortranKEY:



9 Exascale Computing Project

Data layout with Cabana

// Define Cabana structure type                     phase,    constants, global id
using ParticleDataTypes = Cabana::MemberDataTypes< double[6], double[3], int >;

• Cabana (ECP-CoPA): a library for particle-based applications
– Built on Kokkos
– Provides AoSoA (array of structures of arrays) for versatile layout

C++



10 Exascale Computing Project

Executing the Kokkos parallel_for

subroutine push_f(particle_vec, i_vec) BIND(C,name=’push_f')
USE, INTRINSIC :: ISO_C_BINDING
type(ptl_type) :: particle_vec
integer(C_INT), value :: i_vec

do i=1, simd_size ! 32 on CPU, 1 on GPU
... ! Vectorizable loop that advances particle positions

end do

end subroutine

Kokkos::RangePolicy<ParticleList::array_size,ExecutionSpace> range_policy( 0, n_items ); // n_ptl on GPU, n_structs on CPU

// Execute parallel_for
Kokkos::parallel_for(“my_operation”, range_policy_vec, KOKKOS_LAMBDA( const int idx )
{

push_f(p_loc+idx, idx);
});

• Kernel is called in a Kokkos parallel_for
C++

Fortran

module ptl_module
use, intrinsic :: ISO_C_BINDING
type, BIND(C) :: ptl_type

real (C_DOUBLE) :: ph(vector_length,6)
real (C_DOUBLE) :: ct(vector_length,3)
integer (C_INT) :: gid(vector_length)

end type ptl_type
end module

• Must cast Cabana array into Fortran 
type for use in Fortran kernels

Fortran

• Inner loops for vectorization on CPU



11 Exascale Computing Project

Timing on Summit (256 nodes)
CPU GPU

Ion scatter

Ion scatter

Ion push

Ion push

Other

Other

Collisions

Electron push

Electron push

Electron scatter

Electron scatter

R
K 

St
ep

 1
R

K 
St

ep
 2

CPU-only CPU+GPU

Ion shift

Ion shift

• Overall speed-up: 15x CPU only

• CPU-GPU communication costs low
– Actual electron transfer time shown
– Favors simple approach to communication

Electron
push

Electron
push

Cuda
via 

Kokkos

OpenACC



12 Exascale Computing Project

Summit performance comparison and scaling

Old specialized 
Cuda version

Old CPU 
version

Cabana 
version



13 Exascale Computing Project

Cori KNL performance comparison and scaling

Old specialized 
CPU version

Old CPU 
version

Cabana 
version



14 Exascale Computing Project

• Diverse architectures coming up in the near future
– Challenges lie ahead for portability

– Support generally better for C++ than Fortran

• Easier use of Kokkos/Cabana if code is in C++

Transition to C++

Supercomputer Year Petaflops Architecture Language

Summit 2019 200 Nvidia GPUs Cuda

Perlmutter 2020 100 Nvidia GPUs Cuda

Aurora 2021 (?) 1,000 Intel GPUs SYCL

Frontier 2021 1,500 AMD GPUs HIP

Fugaku 2021 1,000 ARM Fortran/C++



15 Exascale Computing Project

The Cabana Fortran implementation of XGC

The ”Cabana Fortran” implementation

• Keep Fortran main and kernels

• C++ interface
– “Light touch:” Localized modification
– Gradual implementation

• Unified, optimized code base

• Downsides:
– Inflexible macros
– No HIP/SYCL support
– Tedious data transfer

Main program

Main Loop
Field solve

Collisions (OpenACC) 

Setup
Setup

Kokkos interface
Deposition (Kokkos)

Kokkos interface
Push (Kokkos)

C++

FortranKEY:



16 Exascale Computing Project

Kokkos C++ Implementation of XGC

Current setup:

• Transition to C++ continues
– Main loop in C++ for easier memory 

management

• Integrated Kokkos/Cabana

• Arrays (field etc.) passed from 
Fortran, copied to Kokkos views

• No explicit cuda or OpenMP

• Ready for any architectures with 
Kokkos and OpenACC

– In theory

Main program
Setup

Main Loop

Deposition (Kokkos)

Field solve

Push (Kokkos)

Collisions (OpenACC) 

Setup

C++

FortranKEY:



17 Exascale Computing Project

Converting the collision kernel to Kokkos

Motivation:

• Pitfalls of multiple programming
models (Kokkos and OpenACC)

– Memory management
– Compiler compatibility
– More opportunities for something to go 

wrong

• Converting to C++ anyway

Main program
Setup

Main Loop

Deposition (Kokkos)

Field solve

Push (Kokkos)

Collisions (Kokkos) 

Setup

C++

FortranKEY:



18 Exascale Computing Project

Converting the collision kernel to Kokkos
• Problem: Collisions computed separately for each mesh node

– ~5,000 mesh nodes per GPU
– ~20 Kokkos kernels each

– Kernels loop over ~1,000 elements -> GPUs underutilized

– Some calculations still on CPU (harder to port) -> More GPU idle time



19 Exascale Computing Project

Converting the collision kernel to Kokkos
• Approach: Multiple streams

– Already done in our OpenACC implementation
– Kokkos also supports Cuda streams
– OpenMP parallel region, each OpenMP thread gets its 

own Cuda stream

• Result:
– GPU usage much higher
– 25% speed-up from OpenACC Fortran version
– Still room for improvement (2-4x)?

• Downside: Possible portability challenges
– Will multiple streams be a viable option for various 

Kokkos back-ends and architectures?

1 stream

2

4

8

14

OpenACC

12

1/n_threads



20 Exascale Computing Project

Summary
• XGC with Kokkos/Cabana is performing well on Summit and Cori KNL

• All major kernels offloaded to GPU with Kokkos
– Electron push, collisions; also charge deposition, sorting

• More compiler flexibility (no longer tied to PGI on Summit)

• Moving more XGC kernels to Cabana framework
– More optimization possible

• GPU-GPU communication
– Potentially rely on Cabana for this

• Ensuring diverging developments can benefit
– ECP-WDM projects (coupling with GENE, GEM, HPIC for whole-device modeling) and other science goals 

are on different branches

Future challenges


